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Abstract 
 

The method of sensitivity analysis of mathematical model with strong non-linear characteristics is discussed in 
the paper. This model focuses on friction, as well as freeplay dynamics in a car steering system including stick-slip 
phenomena. Because of strong nonlinearities of the model, its sensitivity indexes can not be counted by classic 
sensitivity variation equations and classic mathematical analysis of smooth functions. Fortunately, nonlinear 
characteristics are described with using special piecewise - linear luz(…) and tar(…) projections. They have an 
original mathematical apparatus which secures parametrically made simplifications and enough regularity of the 
model (some details of analytical transformations are shown). Thanks to luz(…) and tar(…) projections the continuity 
of sensitivity indexes is secured but of course, the calculation of sensitivity indexes has to base on comparative 
simulation investigations. The paper presents example results of simulations of the steering system action (including 
stick-slip processes) for different values of friction as well as freeplay parameters (kinetic and static friction in king-
pins, backlash in a steering gear). These simulations concern combined open road tests of a passenger car according 
to the ISO requirements (ISO 7401 – the ramp input on the steering wheel, then ISO 4138 – circular steady state 
motion, and finally the steering wheel released, all with a constant speed 80 km/h). 
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1. Introduction  
 

Every car steering system can be treated as a nonlinear multi-body mechanism. Because of a 
dry friction (with stiction, especially in king-pins) and a freeplay (well known as a backlash in 
steering gear) the steering system can be a source of singular dynamic effects (non-linear 
vibrations, stick-slip phenomena, angular off-set of steered wheels after steering wheel release). 
Such dynamic processes influent on handling, steerability, and generally on active safety of a car. 
Indeed, the steering system friction and freeplay are examined strictly when a car passes seasonal 
diagnostic tests. Too high freeplay and non-standard friction in a steering mechanism are 
unacceptable. But on the other hand, these attributes are rarely taken into account in theoretical 
and simulation studies. Sporadic examples of somebody else papers focused on friction or freeplay 
problems in car steering systems are discussed in the Zardecki’s monograph [14], and recently in 
the paper [5]. By the way, the paper [5] contains collective information on the resistance force 
(friction) and angular dead-zone (freeplay) parameters (results of stand tests in the PIMOT) of 
many passenger cars, busses, and trucks. They show that friction/freeplay parameters might be 
surprisingly very diverse (and high) even in new cars. Therefore problems of steering system non-
linear dynamics (i.e. dynamics including friction forces in kingpins and freeplay of steering gear) 
seem to be important for practice and very interesting for science. 

Modern sophisticated studies of dynamical systems base on mathematical models, on their 
sensitivity analysis, and finally on simulation investigations. These three trends have been present 
in author’s scientific works, but most of his papers were devoted to mathematical models and 
simulation investigations. The background of modelling – special piecewise-linear luz(…) and 
tar(…) projections with their mathematical apparatus has been shown in [10], [11], [14]. 
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Derivations of elementary friction/freeplay models have presented in [12], [13], [14]. Synthesis of 
the models of steering system as well as their reductions to simplified forms is described in the 
monograph [14]. Several papers, for example [5], [6], [7], [8], present results of simulation studies 
of a car lateral dynamics including friction and freeplay effects. 

This paper deals with problems (especially theoretical problems) of sensitivity analysis of 
steering system models including friction/freeplay submodels. Such models use strong non-linear 
characteristics (even for small excitation), and have variable-structure form (stick-slip 
phenomenon). So, from theoretical point of view the models of systems working with friction 
and/or freeplay must be classified as non-smooth models.  
 
2. Theoretical background of sensitivity analysis of non-smooth models 

Sensitivity analysis of mathematical models concerns calculations of measures (e.g. integral 
indexes) of differences between signals from nominal and change models.  

 
Fig. 1. General schematic diagram of sensitivity analysis 

When model equations have regular forms and their changes result from parametrically made 
perturbations the sensitivity indexes are continuous functions of these parameters. Classic 
parametric methods take advantage of a variation analysis, so the continuity and differentiation of 
model equations is demanded (Franc [2]). 

In case of models of mechanisms working with friction and freeplay (non-smooth models), 
conditions for differentiation of model equations are not fulfilled. The question appears: What are 
the conditions of “regularity” of the model for assertion of continuity of sensitivity indexes when 
model parameter is changed. According to classic analysis of ordinary differential equations 
(model equations) their variables are continuous in relation to their non-singular parameters of 
equations. The matter is more complicated for parameters that steer a structure of the model and 
cause a reduction of a high-order model to its low-order form (singular perturbation problem). 

Let consider a singular perturbation of a high-order dynamical system model (1):  

t,,y,xfx , 00 x)t(x , nRXx , 

t,,y,xhy , 
00 y)t(y , mRYy , , . 1

0 RTtt 1RE0

For , the singularly-perturbed low-order model (2) is obtained: 0

t,0,y~,x~fx~ , 00 x)t(x~ , nRXx~ , 

t,0,y~,x~h0 , 
00 y)t(y~ , mRYy~ , . 1

0 RTtt
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Now, the reduced model consists of differential and degenerate implicit function equations 
which are constraints for dynamical part of the model. Of course, a simulation of such mixed 
subsystems can not be easy because of necessity of iterations. The problem seems to be especially 
difficult when both forms of the model have a non-compatibility of their initial conditions. 
Generally, 000 t,0,y,xh0  (3) is possible! In this study we assume that initial conditions are 
well-defined i.e. 000 t,0,y,xh0  (4).  

Transformation of singularly-perturbed high-order model to its low-order form is well-defined 
(regular) when for : 0tt

   )t(x~)t(xlim
0

,    )t(y~)t(ylim
0

.          (5) 

The detail question is: What should be the right-hand functions in the high-order model for 
assure regularity of its reduction? For answer, the Tikhonov theory ([9]) “on the dependence of 
solutions on a small parameter” seems to be the most convenient. According to Tikhonov theorem, 
when initial conditions are well-defined, for regular parametrical reduction the model should fulfil 
the following two assumptions: 

There is the function   t,x~gy~  which fulfils t,0,t,x~g,x~h0 .            (6) 

The solution   )(y of the equations ,0),(y,x~h
d

)(yd
 with 

00 y)t(y .    (7) 

Fulfils      )t,x~(g)(ylim  (asymptotic stability) in .      (8) TYX

So we can formulate several conclusions for sensitivity of non-smooth models: 
 Classic sensitivity analysis basing on variation equations and variation indexes must be 

replaced by simulation investigations repeated for different values of parameters. 
 Efficiency of such studies demands regular models without implicit algebraic forms. 
 The regularity of non-smooth system model with well-defined initial conditions and stable 

degenerated equations occurs if variables of degenerated equations can be extracted.  
 Unravelling of the reduced equations appears as the most important problem for theoretical 

structural sensitivity studies.  
 Analytical forms of friction/freeplay submodels are necessary for parametric formulation 

of sensitivity analysis. They should assure unravelling of degenerate equations. 
Piecewise linear luz(…) and tar(…) projections with their special mathematical apparatus 

appear as a very efficient method for solving these description problems important for sensitivity 
analysis of steering system models including friction/freeplay components. 
 
3. The luz(…) and tar(….) projections in friction/freeplay models 

General methods of modelling of multi-body systems with friction (kinetic and static) and 
freeplay (backlash, clearance) provide strong non-linear models with constrains (Brogliato [1], 
Grzesikiewicz [3]). Certainly such models are very difficult for theoretical analysis of stick-slip 
phenomena as well as for analytical model reductions. They are also onerous in simulation 
programs because of iterative procedures. So, a quest of a more “user-friendly” method of 
modelling of multi-body systems has ever been very attractive and appreciated scientific 
challenge. Therefore, semi-analytical Karnopp’s models [4] of stick-slip phenomena in two-mass 
systems (very useful for modelling multi-body serial systems treated as an aggregation of multiple 
single-mass or double-mass subsystems) are cited by researchers many times. Note that steering 
mechanisms might be partially treated as serial systems. 

In cases of steering mechanisms, the friction and freeplay actions can be expressed by 
piecewise linear models basing on piecewise linear characteristics, see Fig. 2.  

 573



 
D. Zardecki 

 
Fig. 2. Typical characteristics for freeplay and friction description. Here version when for kinetic and static friction 

force parameter FTK0 = FTS0 = FT0 . Notation: k – stiffness coefficient, C – viscous friction coefficient , FT0 – dry friction 
parameter, FS – stiffness force, FT – Friction force, z – displacement,  – velocity, F – acting force 

Such characteristics can be described analytically with using simple piecewise-linear luz (…) 
and tar(...) projections.  

Definition:  

For    and  a  0: x

2

axax
x)a,x(luz ,          (9) 

 ,     where     .     (10) )x(sghax)a,x(tar
0xif1
0xif]1,1[s
0xif1

)x(sgh

 

 
Fig. 3. Topology of luz (…) and tar(…) projections 

Example spectacular formulas and theorems are listed below. They are especially useful for 
modelling of steering system dynamics and sensitivity analysis. All constants are non-negative. 

         a,xtara,xluz 1 a,xluza,xtar 1        (inversion formulas), (11,12) 

 a,xluza,xluz         a,xtara,xtar ,        (13,14) 

 ak,xkluza,xluzk       ak,xktara,xtark ,      (15,16) 

 ,     )ba,x(luzb,a,xluzluz )ba,x(tarb),a,x(tartar ,      (17,18) 

 
21

2211
212211 kk

akak
,xtar)kk()a,x(tark)a,x(tark .      (19) 

If  ,  )a,yx(luzk)b,y(luz

then )ba,x(luz
1k

k)b,y(luz        (unravelling formula) .      (20) 

If  a),t(xtarb)t(ytx      and      ]a,a[a)  tar(0,  xQmin  :)a,0(tar
)a,0(tar

, 

where         – convex function, ...Q

   then 
0)t(xifab),t(yluz
0)t(xifa),t(xtarb)t(y

tx .       (21) 
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 If       and     a),t(xtarb)t(ytx 0 , 

Then         a,
b

)t(yluz)t(x .           (22) 

Simple analytical forms of the formulas are the main advantages of this mathematical 
apparatus. Some formulas have semi-linear forms! The luz (…) and tar(…) projections can be used 
to describe different piecewise linear characteristics in compact analytic forms.  

Characteristics presented on Fig.2 can be expressed analytically: 
          0s zz,luz kF              (23) 

          
.0,

0, 

0

0

zifFFluzF

zif
C

F
ztarCF

T

T

T
          (24) 

The piecewise-linear analytical forms with luz(…) and tar(…) projections occur in elementary 
stick-slip models too. The elementary stick-slip models for single-mass and double-mass systems 
presented below have been derived in the papers [13], [14]. 

Stick-slip model for single-mass system: 

 
Fig. 4. Single-mass system with friction 

.0)(),(

0)(),()()(
0

0

tzifFtFluz

tzif
C

F
tztarCtFtzM

T

T        (25) 

Note: When  and 0)t(z 0TF)t(F  we obtain 0F),t(Fluz 0T , so also  (stick state). When 0)t(z

0TF)t(F , we have 0F),t(Fluz 0T  and 0)t(z  (slip state). 
Note: When M  0 (reduction of the model), after inversion of tar(…) we obtain uninvolved form  

0TF),t(Fluz)t(zC  (26) (no motion for 0T0T F)t(FF )). 

Stick-slip model for double-mass system: 

 

Fig. 5. Double-mass system with friction 
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Note: When  and )t(z)t(z 21 0T
21

2112
0T F

MM
)t(FM)t(FM

F  , then  

)t(F)t(F)t(zMM 21121       or      )t(F)t(F)t(zMM 21221 .   (29, 30) 

These equations have identical forms. It means that )t(z)t(z 21  (stick state). 
Note: When , the state  must be steady. It means a blockade of this block. So also 

. After reduction the model passes to the single-mass (M1) system model. 
2M

0
0)t(z2

)t(z 2

We can formulate conclusions important for sensitivity analysis and simulation studies of non-
smooth stick-slip models basing on luz (…) and tar(…) projections: 

 The elementary stick-slip models are regular during parametrically made reductions. 
 These models can be applied directly with standard numerical procedures. 

 
4. Regularity of steering system models basing on luz(…) and tar(…) projections 

Let consider multi-body rotary system as substitutive system of real steering system 
mechanism. This physical model contains not only main elements, but also supplementary mass-
less gear wheels and infinitely large stiffness of shafts that facilitate a synthesis of equations of 
motion. The freeplay concerns the gearbox tooth backlash. The friction elements (with stiction 
action) concern the kingpin bearings as well as the vibration damper. 

 
Fig. 6. Idea of substitutive physical model of steering system mechanism 

Notation: 
   - steering wheel angle 
,    - steering gear input and output angle  
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21 ,   - steering linkage substitutive elements' output angles  
21 ,   - kingpin (and steered wheels’) angles  

M    - steering wheel input torque  
M ,  - steering gear assistance torques (two cases) M

21 M,M  - kingpin external torques (wheels stabilization plus unbalance)  
I    - moment of inertia of steering wheel with steering column 
I ,   - moment of inertia of gearbox input and output wheel  I

21 I,I   - moments of inertia of steering linkage substitutive elements  
21 I,I   - moments of inertia of kingpins with steered wheels  

K   - steering column stiffness coefficient  
K   - gearbox teeth stiffness coefficient  

21 K,K    - stiffness coefficients of substitutive linkage shafts 

2211 K,K - stiffness coefficients of substitutive linkage-kingpin gear subsystem 
  - steering column’s substitutive material damping coefficient  

   - damping coefficient of steering mechanism damper  
21 ,      - damping coefficient of kingpin bearings  

0TM   - maximal dry friction torque of gearbox damper  
20T10T M,M - maximal dry friction torques of king pin bearings  

0p     - gear freeplay parameter (1/2 of freeplay seen from steering wheel) 
p    - gear ratio (for steady state p ) 

21 n,n    - substitutive gear ratios of left and right part of steering linkage - kingpin subsystem 
(for steady states 111 n , 222 n ). They can be nonlinear functions of  and 1 2 . 

In consideration of some parameters’ disproportions we will set in utility models: , 0I 0I , 
, , , , . 0I 1 0I 2 11K 22K K

Detail derivation of mathematical model and its simplified forms is present in the monograph 
[14]. Here, only the main transformations important for regularity of the model are shown.  

The primary mathematical model is based on the standard Newton’s equations. For shorten 
description, detail formulas concerning static friction states are not presented for the moment. 

M)(KI ,         (31) 

Mp,pluzK)(K
M

,tarI 0
0T ,   (32) 

M)(K)(K
p
p

,
p

luzKpI 2211
02 ,     (33) 

0nK)(KI 111111111 ,       (34) 
0nK)(KI 222222222 ,        (35) 

11
1

1
11

2
1

1

10T
1111 M

n
Kn

M
,tarI ,      (36) 

22
2

2
22

2
2

2

20T
2222 M

n
Kn

M
,tarI .      (37) 

When ,   the primary model is reduced (parametric transformation) to: 0I,I 2211 K,K

M)(K)(I ,         (38) 
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0T0 M,Mp,pluzK)(Kluz1 ,   (tar-1(…) was used)  (39) 

M)n(K)n(K
p
p,

p
luzKp 222111

02 , (algebraic equation)    (40) 

11111
1

10T
1111 M)n(Kn

M
,tarI ,         (41) 

22222
2

20T
2222 M)n(Kn

M
,tarI .        (42) 

For regularity of the model, the  should be removed. So, our algebraic equation is rewritten as  

p
p

,
p

luz
KK

Kp
KK

MnKnK 0

21

2

21

222111           (43).        That is  

p
p,

KK
MnKnK

KK
MnKnK

p
luz

KK
Kp

0,
KK

MnKnK
luz

0

21

222111

21

222111

21

2

21

222111

.  (44) 

Applying the unravelling formula (see p.3) we can extract the  

21

2221110

21

222111

2
21 KK

MnKnK
p
p

,
KK

MnKnK
p

luz

Kp
KK

1

1 .    (45) 

Setting , after simple transformations we obtain a final variable-structure form respecting 
kinetic as well as static friction states (necessary for stick-slip description): 

K

M)(K)(I           (46) 
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0
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222111
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21 M,
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MnKnK
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)(K
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p
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This form has not any algebraic loops and is convenient to standard ODE (Ordinary 
Differential Equations) procedures.  

The regularity of the model means that it can be applied as the base model for simulation 
studies of friction/freeplay effects in steering system mechanism and for sensitivity analysis when 
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friction/freeplay parameters are varied. Thanks to luz(…) and tar(…) projections the continuity of 
sensitivity indexes is secured. Of course, calculations of sensitivity indexes have to base on 
comparative simulations. 
 
5. Simulation investigations and sensitivity conclusions  

The presented regular model was used in extensive simulation investigations. Those studies 
were focused on the sensitivity of the car dynamics when friction or/and freeplay parameters are 
varied. 

For sensitivity analysis the FORS program (special simulation program) was elaborated. This 
program enables simulation investigations of passenger car which is tested according to several 
ISO and ECE regulations. The model of car dynamics contains two main submodels – the partial 
model of the steering system dynamics and the partial model of the vehicle motion. These 
submodels are very complex, and have modular forms (Fig. 7). They allow the testing of 2WS 
vehicles without and with power assistance as well as 4WS cars. The module of steering system 
mechanism model (p.4), as well as the modules of power assistance model and steer of rear wheels 
model are described with details in the monograph [14]. 

 
Fig. 7. Idea of modular form of steering system model 

The FORS program enables: 
 standard simulation (for one data set),  
 sensitivity computation (comparative simulations with variation of parameter),  
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 bifurcation computation (comparative simulations for many values of parameter with 
registration output signals at selected moment of the time).  

Example results of simulation computation for sensitivity analysis (Fig. 8) concern a combined 
ISO road test. The sequence of the test is: ISO7401 – ramp input on the steering wheel, then 
ISO4138 – circular steady state motion, an finally steering wheel released. The vehicle speed is 80 
km/h. 

 
Fig. 8. Example simulation results (time history of left wheel angle) for combined ISO road test of 2WS car with 

steering system without power assistance. Dry friction parameter MT 0 [1.35, 4.05]Nm, freeplay parameter  
( -p )0 [0,0.27] rd 

An extensive simulation data are easy to get in other author’s papers (listed in [5] and [14]). 
On the base of those simulation investigations some conclusions on sensitivity of steering system 
model including friction/freeplay have been formulated.  

The main conclusion is that the freeplay/friction parameters influence steering system 
dynamics and car steerability properties. This is evidently visible in simulation signals. But this 
influence is very complicated and depends of the car steering system structure (2WS without and 
with power assistance, 4WS). Introduction of the servomechanisms (2WS with power assistance) 
significantly extinguished temporary processes and a little diminished the sensitivity on the 
changes of the freeplay/friction parameters. Addition of the steering for the back wheels 
diminishes the sensitivity a little. Changing of the friction force characteristics (for example 
difference between maximum static friction force and kinetic dry friction force, or so called the 
Stribeck effect as a supplement to the Coulomb characteristics) does not influent considerable on 
angle motions of steered wheels. 
 
6. Final remarks 

Investigations concerning the friction or freeplay influence on the car steering system dynamics 
and the car steerability properties should be continued. This seems to be especially important for 
synthesis of so called robust control subsystems – components of mechatronic devices in the steering 
system and for synthesis of driver’s assistance subsystems. Of course, extensive sensitivity studies of 
non-smooth steering system models can be very interesting for all researchers working on multi-
body systems simulation software, for specialists of robotics and so on.  
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